DETERMINATION OF THE STEREOCHEMISTRY OF ETHYLENE METHOXYMERCURATION BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

TAKASHI IBUSUKI and YASUKAZU SAITO

Department of Synthetic Chemistry, Faculty of Engineering, University of Tokyo, Bunkyoku, Tokyo (Japan) **(ReceivedNovember 24th, 1972)**

SUMMARY

The complete stereospecificity of ethylene methoxymercuration has been confirmed using NMR spectroscopy by comparing methoxymercurated transethylene-1,2-d, with methoxymercurated cis-ethylene-1,2-d,. On the basis of the solvent effects on the vicinal proton-proton coupling constants of these compounds, we have identified the former as $\frac{e}{2}$ -dideuterio-2-methoxyethylmercuric chloride and the latter as the *threo* isomer. The stereochemistry of ethylene methoxymercuration is thus concluded to be an exclusively anti addition.

INTRODUCTION

Considerable stereochemical interest has been evoked in the oxymercuration of olefins^{$1-4$}. Among cyclic olefins, exclusive syn addition for *trans*-cyclooctene⁵ and norbornene6 has attracted special attention. The stereospecificity of the former is ascribed to the steric hindrance of the methylene chain, since the oxygen-containing parts of the molecules are prevented from back side attack on the double bond of the mercurinium ion intermediate'. The latter case is interpreted as a result of reduced internal strain in the transition state2. Similar arguments have been invoked for bicyclo $[2.1.1]$ hexene⁷ and for the addition of mercuric azide to cyclopropene⁸.

In contrast, the stereochemistry for bicyclo[2.2.2] octene is dependent not only on the concentration and the nature of the oxy anion but also on the polarity of the solvent⁹⁻¹¹. Although the syn process has been proposed to be due to either a fourcentered or a six-centered transition state by $Traylor^{2,10}$, a common intermediate for syn and *anti* addition, *i.e.*, a solvated mercurinium ion, was suggested by Bach¹¹, in which syn addition occurs when the ion-pair disintegrates at the front side of double bond. Such an interpretation is interesting from the viewpoint of complex catalysis¹², since the stereochemistry is determined by ligand effects on the mercury. Ligand insertion also plays an important role¹³ in olefin oxypalladation during the Wacker reaction¹⁴.

Oxymercuration of cyclic olefms usually results in *anti* stereochemistry'. Recently, oxymercuration of acenaphthylene¹⁵ and indene¹⁶ were shown to occur in the *anti* manner in spite of the *syn* predominance in hydrohalogenation¹⁷. The stereo-

1 :. : _'

chemistry of oxymercuration has previously been determined by the use of kinetics¹⁸, X-ray diffraction¹⁹, and IR⁶, or NMR spectroscopy^{11,20-22}.

With acyclic olefins, however, conformational analysis applied to freely rotating oxymercurials cannot afford the mode of addition_ Thus the methoxy and iodomercury groups of 2-methoxyethylmercuric iodide were ascertained by IR spectroscopy to be in *trans* positions in the solid state²³, but an *anti* addition to ethylene was not deduced³. The stereospecificity of the oxymercuration-deoxymercuration of the 2-butenes is apparent, since both of the starting 2-butenes are exclusively regenerated²⁴. The stereochemistry was determined from the relative magnitude of the deoxymercuration of anti and syn adducts of methoxymercurated cyclohexene, where the former is approximately 10^6 times faster than the latter¹⁸. The observed rates of regeneration of *trans*- and *cis-2*-butene were reported to be 13.8 ± 0.81 and $13.6 \pm$ 0.71 mol^{-1} sec⁻¹, together with activation energies of 15.2 ± 0.7 and 14.8 ± 0.3 $kcal \cdot mol^{-1}$, respectively²⁴. The lack of unequivocal evidence for *anti* addition with simple olefins was pointed out by Fahey⁴, who proposed an *AdE3 anti* addition mechanism for oxymercuration.

In the present work we report the oxymercuration of the simplest olefin, ethylene, stereospecifically deuterated at the *trans* and *cis* positions. The stereochemistry of its oxymercuration and the configurational identification of the products can be determined by the solvent effects on the vicinal proton-proton coupling constants of 1,2-dideuterio-2-methoxyethylmercuric chlorides.

EXPERIMENTAL

Both trans-ethylene-1,2- d_2 and cis-ethylene-1,2- d_2 were prepared by the method of Nicholas²⁵. These deuterated ethylenes were identified by infrared spectroscopy using a JASCO IRA-2 spectrometer in the rocksalt region. Isotropic and isomeric purities were confirmed by the fact that an intense absorption band at 987 cm⁻¹ was observed for gaseous *trans*-ethylene-1,2- d_2 , without any band around 842 cm⁻¹ at 90 mmHg, and *vice versa* for *cis*-ethylene-1,2- d_2 ²⁶.

2-Methoxyethylmercuric chloride and the 1,2-dideuterio-2-methoxyethylmercuric chlorides were prepared according to the usual method²⁷. The solutions (20 wt $\%$) of these mercurials in various solvents were analyzed at 24 \degree by JEOL PS-100 (100 MHz) and Hitachi R-20 B (60 MHz) NMR spectrometers. Deuterium decoupling was carried out for the deuterated mercurials with JEOL JNM-OA-1 or Takeda-Riken 3130 synthesizers. The chemicals used here were obtained from standard commercial sources and were used without further purification.

RESULTS

1. *Stereospecificity in methoxymercuration toward ethylene-1,2-d,*

An NMR spectrum of methoxymercurated *trans*-ethylene-1,2- d_2 (I) dissolved in dimethyl sulfoxide is shown in Fig. l(a). The doublets of an AB spin system, appearing at δ 1.850 and 3.560 ppm from internal TMS standard, were assigned to the methylene protons with the carbons substituted by the chloromercury and methoxy groups, respectively²⁸. The vicinal proton-proton coupling constant was determined to be 9.31 Hz from the splitting of the doublets. The four small sets of doublet peaks **were interpreted as the satellites due to the vicinal and geminal proton-mercury ("'Hg; I= l/2, natural abundance 16.84 %) spin-spin interactions. A similar spectrum was obtained for methoxy-mercurated cis-ethylene-1,2-d, (II), for which chemical shifts of 1.852 and 3.559 ppm and a coupling constant of 5.72 Hz were observed. The** NMR spectrum of a 1/1 mixture of compounds (I) and (II) is also shown in Fig. 1 (b). **The peaks of both (I) and (II) were observed to be separated owing to the large dif**ference in the vicinal coupling constants for (I) and (II) . It was also confirmed that

there was no superposition of NMR peaks for (II). The complete stereospecilicity of the methoxymercuration of ethylene is thus established.

2. *Solvent effects on the vicinal proton-proton coupling constants of 1,2-dideuterio-2 methoxyethylmercuric chlorides*

The vicinal proton-proton coupling constants, J_{AB} , obtained in various solvents, are summarized in Table 1.

TABLE 1

VICINAL H-H COUPLING CONSTANTS OF METHOXYMERCURATED truns-ETHYLENE-1,2 d_2 _(I) AND cis-ETHYLENE-1,2- d_2 (II), AND RELATED VALUES IN VARIOUS SOLVENTS^a

***** All values are measured at 24° in 20 wt% solutions. b $J_{av}(1)$ means $\left(\frac{1}{3}\right)[J(1)+2J(1)]$. See text. $\left[\frac{1}{2}J_{av}(2)\right]$ means $(\frac{1}{3})[2J(1) + J(11)]$. See text.

There are apparently opposing tendencies in the solvent dependence of J_{AB} for methoxymercurated *trans*-ethylene-1,2- d_2 (I) and for methoxymercurated *cis*ethylene-1,2-d₂(II). The former, $J(I)$, increased with the polarity of solvents from 7.15 Hz in chloroform to 9.31 Hz in dimethyl sulfoxide, whereas the latter, $J(II)$, decreased from 6.80 Hz in chloroform to 5.72 Hz in dimethyl sulfoxide. It is further to be noted that the values of $J(I)$ were larger than those of $J(I)$ in all the solvents investigated and that the more polar the solvent, the larger the magnitude of $J(I) - J(II)$.

DISCUSSION

1. The stereochemistry of ethylene methoxymercuration as deduced from configurational *identification of 1,2-dideuterio-2-methoxyethylmercuric chlorides*

Since the complete stereospecificity of methoxymercuration toward *trans*ethylene-1,2- d_2 and cis-ethylene-1,2- d_2 is confirmed, these products must be diastereoisomers. The following two cases are therefore possible in connection with the mode of addition. The one case is an *anti* addition, where trans-ethylene-1,2-d₂ and cis -ethylene-1,2-d, afford *erythro-1,2-dideuterio-2*-methoxyethylmercuric chloride and the *threo* isomer, respectively_ The other case is a syn addition, *i.e., the* assignment of the diastereoisomers is opposite.

On the basis of the solvent and substituent effects on the vicinal protonproton coupling constants of 2-methoxyethylmercuric chloride, we have identified the methoxymercurated *trans-ethylene-1,2-d,(I) as erythro-1,2-dideuterio-2-methoxy*ethylmercuric chloride and the methoxymercurated cis-ethylene-1,2- d_2 (II) as the *threo* isomer in the following manner.

A. 2-Methoxyethylmercuric chloride is composed of two kinds of rotational isomers, the one with the chloromercury and methoxy groups disposed *trans*, and the **other, two energetically equivalent enantiomers with two groups disposed gauche.** n_t and $n_a = 1 - n_t$, arc defined as the populations of the two kinds of rotamers, re**spectively- The vicinal proton-proton coupling constants of the** *erythro* **isomer (the** methoxymercurated *trans*-ethylene-1,2- d_2), $J(I)$, and that of the *three* isomer (the methoxymercurated cis-ethylene-1,2- d_2), $J(II)$, can be described as a function of the **populations as follows2g** :

$$
J(I) = J_g + n_t (J_t - J_g) \tag{1}
$$

$$
J(II) = \left(\frac{1}{2}\right) \left[\left(J_t + J_g\right) - n_t \left(J_t - J_g\right) \right] \tag{2}
$$

 J_t and J_g are the vicinal coupling constants for the two protons disposed *trans* and *gauche,* **respectively. Equation (3) is derived from eqns. (1) and (2).**

$$
J(I) + 2 J(II) = J_t + 2 J_g \tag{3}
$$

The values of $(J_t + 2J_d)$ should be solvent independent, since both J_t and J_d **should not be changed by solvents. It is wide!y recognized that the vicinal protonproton coupling constants of rigid molecules which cannot undergo conformational** changes, are solvent independent^{30,31}. Some examples, those of styrene oxide³², styrene sulfide³², and 1,2,3,4,5,7,7-heptachloro [2.2.1] heptene^{33,34}, are shown in **Fig. 2 as a function of the dielectric constants of the solvent. It is apparent that the lines are straight and parallel to the abscissa.**

Thus the values of $J(I) + 2J(II)$ in various solvents should be constant by **considering eqn. (3) and Fig. 2. The average vicinal proton-proton coupling con**stants of 2-methoxyethylmercuric chloride, $J_{av}(1) = (\frac{1}{3}) [J(I) + 2J(II)]$, are listed in Table 1 and added to Fig. 2. It is apparent that the plots of $J_{av}(1)$ are parallel to the abscissa as expected.

B. **On the assumption of the opposite assignment that the methoxymercurated trans-ethylene-1,2-d,** is the *three* isomer and the methoxymercurated cis-ethylene-1,Z d, is the *erythro* isomer, the average vicinal proton-proton coupling constants are described as $J_{av}(2) = (\frac{1}{3})[2J(1) + J(1)]$. The calculated values of $J_{av}(2)$ in various **solvents are listed in Table 1 and the plots are shown as the broken line in Fig. 2. This line is dependent on the dielectric constant of the solvent to a remarkable extent, which is anomalous in comparison with the lines of the examples given in Fig. 2.** Thus the assignment deduced from the assumption of a syn addition has been disproved_

C. Finally, the magnitude of $J_{av}(1)$ is very reasonable from the viewpoint of **the substituent electronegativities, which have been ascertained for various 1,2** disubstituted ethanes by Abraham³⁵. The average vicinal proton-proton coupling constant of 2-methoxyethylmercuric chloride, J_{av}^{calc} , is determined according to the **equation** :

 $J_{av}^{calc} = 18.0 - 0.8 \Sigma E_i$

The electronegativities of H, OCH₃, and HgCl substituents are taken as 2.1, 3.5, and 1.9, respectively³⁶. The value of J_{av}^{calc} is given as a broad line in Fig. 2. The coincidence **of the broad line and the plots of** *J,,(* **1) strongly supports the validity of our assignment.**

Thus the stereochemistry of methoxymercuration of the simplest olefm, ethylene, is defmitely established as an exclusive anti **addition.**

Fig. 2 Dependence of calculated vicinal proton-proton ccupling constants for *1,2-dideuterio-2-* **rnethoxyethylmercuric chlorides and observed values for some rigid molecules on the dielectric constants ofsolvents.** \bigcirc : Vicinal coupling constants calculated from the equation, $J_{av}(1) = \frac{1}{3} \left[J(1) + 2J(11) \right]$, for 1.2-dideuterio-Fig. 2. Dependence of calculated vicinal proton-proton coupling constants for 1,2-dideuterio-2-methoxy-2-methoxyethylmercuric chlorides. See text. \bullet : Vicinal coupling constants calculated from the equation, $J_{\bullet\bullet}(2) = (\frac{1}{2})[2J(1) + J(11)]$, for the same compounds. See text. (a) J_{cis} of 1,2,3,4,5,7,7-heptachlorobicyclo-[2.2.1] heptene; (b) J_{cis} of the episulfide protons in styrene sulfide; (c) J_{trans} of the episulfide protons in styrene sulfide; (d) J_{cis} of the epoxy protons in styrene oxide; (e) J_{trans} of 1,2,3,4,5,7,7-heptachlorobicyclo-[2.2.1] heptene; (f) J_{trans} of the epoxy protons in styrene oxide.

21 *The preferred conformation of 2-methoxyethylmercuric chloride*

The preferred conformation of 2-methoxyethylmercuric chloride may be determined from the following equation, which is derived from eqns. (1) and (2)²⁹:

$$
J(I) - J(II) = \left(\frac{3}{2}\right)\left(J_t - J_g\right)\left(n_t - \frac{1}{3}\right) \tag{4}
$$

It is generally accepted for substituted acyclic alkanes that J_t is always larger than J_a in accordance with the Karplus equation³⁷. Thus the sign of $J(I) - J(II)$ can reflect the preferred conformation of the compound.

As pointed out previously, $J(I)$ is larger than $J(II)$ in all the solvents investigated. It is therefore concluded that n, is always larger than $\frac{1}{3}$, the equivalent population, and that the conformation with the chloromercury and methoxy groups disposed *trans* is more stable than the *gauche* conformation in all the solvents. This preference is emphasized in polar solvents, as can be seen from the fact that $J(I) - J(II)$ is 3.59 Hz in dimethyl sulfoxide which is much larger than that of 0.35 Hz in chloroform_

ACKNOWLEDGEMENTS

:

The authors wish to express their gratitude to Prof. Yukio Yoneda for helpful discussion and encouragement_ Financial support from the Kawakami Memorial Fund is acknowledged.

REFERENCES

- 1 W. Kitching, Organometal. Chem. Rev., 3 (1968) 61.
- 2 T. G. Traylor, Accounts *Chem. Res., 2 (1969) 152.*
- *3 N. S. Zefirov, Russ. Gem. Reu., 34* (1965) *527.*
- *4* R. C. Fahey, *Top. Stereochem, 3* (1968) *237.*
- *5* (a) V. I. Sokolov, L. L. Troitskaya and 0. A. Reutov, Dokl. &ad- Nauk, SSSR. 166 (1966) 136; (b) V. I. Sokolov, L. L. Troitskaya and 0. A. Reutov, J. *Organometal. Chem., 17* (1969) *323.*
- *6* (a) T. G. Traylor and A. W. Baker, *Tetrahedron Lert., (1969) 14;* (b) T: G. Traylor and A. W. Baker, J. *Amer. Chem. Sot., 85* (1963) *2746.*
- *7* F. T. Bond, *J. Amer.* Chem. Sot., 90 (1968) *5326*
- *8* J. E. Galle and A. Hassner, *J. Amer. Chem. Sot, 94 (1972) 3930.*
- *9* T. G. Traylor, *J. Amer. Chem. Sot., 86* (1964) 244.
- 10 T. T. Tidwell and T. G. Traylor, *J. Org. Gem.,* 33 (1968) 2614.
- 11 R. D. Bach and R. F. Richter, *J. Amer. Chem. Sot., 94 (1972) 4747.*
- *12 Y.* Saito, J. *Electrochem. Sot. Japan, 40* (1972) 175.
- 13 R. S. Nyholm, *Proc. Third Congr. Cat, Amsterdam, (1964) 25.*
- *14* P. M. Henry, *J. Amer. Chem. Sot, 86 (1964) 2246.*
- *15* V. I. Sokolov, L. L. Troitskaya and 0. A. Reutov. Zh. Org. *Khim..* 5 (1969) 174.
- 16 A. Toyoda and Y. Saito, Submitted for publication.
- 17 (a) M. J. S. Dewar and R. C. Fahey, *J. Amer. Chem. Sot., 85 (1963) 2245;*
- (b) M. J. S. Dewar and R. C. Fahey, J. *Amer. Chem. Sot., 85* (1963) *2248.*
- *18* M. M. Kreevoy and F. R. Kowitt, *J. Amer. Chem. Sot-, 82* (1960) 739.
- 19 A. G. Brook and G. F_ Wright, *Acta Crystallogr., 4* (1951) 50.
- 20 (a) M. M. Anderson and P. M. Henry, *Chem. Ind. (London), (1961) 2053;*
- (b) S. Wolfe and P. G. Campbell, Can. *J. Chem.,* 43 (1965) 1184.
- 21 W. L. Waters, *Tetrahedron Lett.,* (1969) 3769.
- 22 R. F. Richter, J. C. Phillips and R. D. Bach, *Tetrahedron Lett., (1972) 4327.*
- *23* M. M. Kreevoy and L. T. Ditsch, *J. Amer. Gem. Sot.,* 82 (1960) 6124.
- 24 M. M. Kreevoy, L. L. Schaleger and J. C. Ware, Trans. *Faraday Sot., 58 (1962) 2433.*
- *25* P. P. Nicholas and R. T. Carroll, *J. Org. Chem., 33* (1969) 2345.
- 26 R. L. Arnet and B. L. Crawford, Jr., *J. Gem. Phys.,* 18 (1950) 118.
- 27 K. Ichikawa, H. Ouchi and S. Arai, *J. Amer. Chem. Sot., 82* (1960) 388d.
- 28 E A. Cotton and J. R. Leto, *J. Amer. Chem. Sot., 80 (1958) 4823.*
- *29* L. M. Jackmann and S. Stemhell, *Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry,* 2nd Ed., Pergamon, New York, 1969, p. 291.

. . .

- *30* P. Laszro, *Progr. NMR Spectr., 3* (1967) 231.
- 31 R. J. Abraham, *J. Phys. Chem.,* 73 (1969) 1192.
- 32 S. L. Smith and R H. Cox, *J. Chem. Phys., 45 (1966) 2848.*
- *33 S.* L. Smith and R. H. Cox, *J. Phys. Chem., 72 (1968) 198.*
- 34 R. H. Cox and L. W. Harrison, *J. Magn. Resonance*, 6 (1972) 84.
- *35* R. J. Abraham, **Mol.** *Phys., 7* (1963) 165.
- 36 H. 0. Pritchard and H. A. Skinner, *Chem. Rev, 55* (1955) *745.*
- *37* M. Karplns, *J. Amer. Chem. Sot., 85 (1963) 2870.*

:_: ':